7 research outputs found

    Cost-efficient Low Latency Communication Infrastructure for Synchrophasor Applications in Smart Grids

    Get PDF
    With the introduction of distributed renewable energy resources and new loads, such as electric vehicles, the power grid is evolving to become a highly dynamic system, that necessitates continuous and fine-grained observability of its operating conditions. In the context of the medium voltage (MV) grid, this has motivated the deployment of Phasor Measurement Units (PMUs), that offer high precision synchronized grid monitoring, enabling mission-critical applications such as fault detection/location. However, PMU-based applications present stringent delay requirements, raising a significant challenge to the communication infrastructure. In contrast to the high voltage domain, there is no clear vision for the communication and network topologies for the MV grid; a full fledged optical fiber-based communication infrastructure is a costly approach due to the density of PMUs required. In this work, we focus on the support of low-latency PMU-based applications in the MV domain, identifying and addressing the trade-off between communication infrastructure deployment costs and the corresponding performance. We study a large set of real MV grid topologies to get an in-depth understanding of the various key latency factors. Building on the gained insights, we propose three algorithms for the careful placement of high capacity links, targeting a balance between deployment costs and achieved latencies. Extensive simulations demonstrate that the proposed algorithms result in low-latency network topologies while reducing deployment costs by up to 80% in comparison to a ubiquitous deployment of costly high capacity links

    Seamless Support of Low Latency Mobile Applications with NFV-Enabled Mobile Edge-Cloud

    Get PDF
    Emerging mobile multimedia applications, such as augmented reality, have stringent latency requirements and high computational cost. To address this, mobile edge-cloud (MEC) has been proposed as an approach to bring resources closer to users. Recently, in contrast to conventional fixed cloud locations, the advent of network function virtualization (NFV) has, with some added cost due to the necessary decentralization, enhanced MEC with new flexibility in placing MEC services to any nodes capable of virtualizing their resources. In this work, we address the question on how to optimally place resources among NFV- enabled nodes to support mobile multimedia applications with low latency requirement and when to adapt the current resource placements to address workload changes. We first show that the placement optimization problem is NP-hard and propose an online dynamic resource allocation scheme that consists of an adaptive greedy heuristic algorithm and a detection mechanism to identify the time when the system will no longer be able to satisfy the applications’ delay requirement. Our scheme takes into account the effect of current existing techniques (i.e., auto- scaling and load balancing). We design and implement a realistic NFV-enabled MEC simulated framework and show through ex- tensive simulations that our proposal always manages to allocate sufficient resources on time to guarantee continuous satisfaction of the application latency requirements under changing workload while incurring up to 40% less cost in comparison to existing overprovisioning approaches

    Cost-Efficient NFV-Enabled Mobile Edge-Cloud for Low Latency Mobile Applications

    Get PDF
    Mobile edge-cloud (MEC) aims to support low la- tency mobile services by bringing remote cloud services nearer to mobile users. However, in order to deal with dynamic workloads, MEC is deployed in a large number of fixed-location micro- clouds, leading to resource wastage during stable/low work- load periods. Limiting the number of micro-clouds improves resource utilization and saves operational costs, but faces service performance degradations due to insufficient physical capacity during peak time from nearby micro-clouds. To efficiently support services with low latency requirement under varying workload conditions, we adopt the emerging Network Function Virtualization (NFV)-enabled MEC, which offers new flexibility in hosting MEC services in any virtualized network node, e.g., access points, routers, etc. This flexibility overcomes the limitations imposed by fixed-location solutions, providing new freedom in terms of MEC service-hosting locations. In this paper, we address the questions on where and when to allocate resources as well as how many resources to be allocated among NFV- enabled MECs, such that both the low latency requirements of mobile services and MEC cost efficiency are achieved. We propose a dynamic resource allocation framework that consists of a fast heuristic-based incremental allocation mechanism that dynamically performs resource allocation and a reoptimization algorithm that periodically adjusts allocation to maintain a near- optimal MEC operational cost over time. We show through ex- tensive simulations that our flexible framework always manages to allocate sufficient resources in time to guarantee continuous satisfaction of applications’ low latency requirements. At the same time, our proposal saves up to 33% of cost in comparison to existing fixed-location MEC solutions

    A Distributed Inter-Domain Control System for Information-Centric Content Delivery

    Get PDF
    The Internet, the de facto platform for large-scale content distribution, suffers from two issues that limit its manageability, efficiency and evolution: (1) The IP-based Internet is host-centric and agnostic to the content being delivered and (2) the tight coupling of the control and data planes restrict its manageability, and subsequently the possibility to create dynamic alternative paths for efficient content delivery. Here we present the CURLING system that leverages the emerging Information-Centric Networking paradigm for enabling cost-efficient Internet-scale content delivery by exploiting multicasting and in-network caching. Following the software-defined networking concept that decouples the control and data planes, CURLING adopts an inter-domain hop-by-hop content resolution mechanism that allows network operators to dynamically enforce/change their network policies in locating content sources and optimizing content delivery paths. Content publishers and consumers may also control content access according to their preferences. Based on both analytical modelling and simulations using real domain-level Internet sub-topologies, we demonstrate how CURLING supports efficient Internet-scale content delivery without the necessity for radical changes to the current Internet

    An Information-Centric Communication Infrastructure for Real-Time State Estimation of Active Distribution Networks

    Get PDF
    © 2010-2012 IEEE.The evolution toward emerging active distribution networks (ADNs) can be realized via a real-time state estimation (RTSE) application facilitated by the use of phasor measurement units (PMUs). A critical challenge in deploying PMU-based RTSE applications at large scale is the lack of a scalable and flexible communication infrastructure for the timely (i.e., sub-second) delivery of the high volume of synchronized and continuous synchrophasor measurements. We address this challenge by introducing a communication platform called C-DAX based on the information-centric networking (ICN) concept. With a topic-based publish-subscribe engine that decouples data producers and consumers in time and space, C-DAX enables efficient synchrophasor measurement delivery, as well as flexible and scalable (re)configuration of PMU data communication for seamless full observability of power conditions in complex and dynamic scenarios. Based on the derived set of requirements for supporting PMU-based RTSE in ADNs, we design the ICN-based C-DAX communication platform, together with a joint optimized physical network resource provisioning strategy, in order to enable the agile PMU data communications in near real-time. In this paper, C-DAX is validated via a field trial implementation deployed over a sample feeder in a real-distribution network; it is also evaluated through simulation-based experiments using a large set of real medium voltage grid topologies currently operating live in The Netherlands. This is the first work that applies emerging communication paradigms, such as ICN, to smart grids while maintaining the required hard real-time data delivery as demonstrated through field trials at national scale. As such, it aims to become a blueprint for the application of ICN-based general purpose communication platforms to ADNs

    Application of phasor measurement units for monitoring power system dynamic performance

    Get PDF
    This Working Group is a sequel to a previous working group on Wide Area Monitoring and Control for Transmission Capability Enhancement, which published the Technical Brochure 330 in 2007. Since then the synchrophasor technology has advanced rapidly and many utilities around the world have installed hundreds of PMUs in their networks. In this Technical Brochure, we look at the current state of the technology and the extent to which it has been used in the industry. As the technology has matured, it is also important to understand the communication protocols used in synchrophasor networks and their relevant cyber-security issues. These concerns are briefly discussed in the brochure. The applications of Phasor Measurement Units (PMU) measurements reported here are divided into three categories: (a) applications already installed in utility networks, (b) applications that are well-tested, but not yet installed, and (c) applications that are beneficial to the industry, but not fully developed yet. The most common and mature applications are wide area monitoring, state estimation, and model validation. Out of these three applications, wide area monitoring is well established in the industry. The protection and control applications are emerging as evident from the reported examples. The experience of using remote synchrophasor measurements as feedback control signals is not widely reported by the industry. In parallel to this Working Group, Study Committee B5 had a Working Group on “Wide area protection and control technologies.” The Technical Brochure 664 published by this Working Group in September 2016 reviews synchrophasor technology and discusses the industry experience with wide area protection and control. The North American synchrophasor Initiative (NASPI) is another technical group that has gathered and reported a wide range of PMU experiences of industry and researchers. In summary, the field-tested applications presented in this Technical Brochure are a testimony to the confidence of utilities in the synchrophasor technology. The progress in state estimation techniques indicates that synchrophasor measurements will become a standard part of energy management and security assessment systems in the near future

    Information-Centric Connectivity

    No full text
    Mobile devices are often presented with multiple connectivity options, usually making a selection either randomly or based on the wireless medium's conditions, as is the case for current offloading schemes. In this article we propose that link-layer connectivity can be associated with information availability and in this respect connectivity decisions should be information-aware. To achieve information awareness at the link layer, we leverage on the information-centric networking paradigm and introduce the concept of information-centric connectivity (ICCON). We elaborate on different types of information availability and connectivity decisions in the context of ICCON, present specific use cases, and discuss emerging opportunities, challenges, and technical approaches. We illustrate the potential benefits of ICCON through preliminary simulation and numerical results in an example use case. © 2016 IEEE
    corecore